Adaptive Sampling for Noisy Problems
نویسنده
چکیده
The usual approach to deal with noise present in many realworld optimization problems is to take an arbitrary number of samples of the objective function and use the sample average as an estimate of the true objective value. The number of samples is typically chosen arbitrarily and remains constant for the entire optimization process. This paper studies an adaptive sampling technique that varies the number of samples based on the uncertainty of deciding between two individuals. Experiments demonstrate the effect of adaptive sampling on the final solution quality reached by a genetic algorithm and the computational cost required to find the solution. The results suggest that the adaptive technique can effectively eliminate the need to set the sample size a priori, but in many cases it requires high computational costs.
منابع مشابه
An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems
In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...
متن کاملNonparametric estimation for pure jump irregularly sampled or noisy Lévy processes
In this paper, we study nonparametric estimation of the Lévy density for pure jump Lévy processes. We consider n discrete time observations that may be irregularly sampled or possibly corrupted by a small noise independent of the main process. The case of non noisy observations with regular sampling interval has been studied by the authors in previous works which are the benchmark for the exten...
متن کاملComparative Study of Particle Swarm Optimization and Genetic Algorithm Applied for Noisy Non-Linear Optimization Problems
Optimization of noisy non-linear problems plays a key role in engineering and design problems. These optimization problems can't be solved effectively by using conventional optimization methods. However, metaheuristic algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) seem very efficient to approach in these problems and became very popular. The efficiency of these ...
متن کاملTop-k Selection based on Adaptive Sampling of Noisy Preferences
We consider the problem of reliably selecting an optimal subset of fixed size from a given set of choice alternatives, based on noisy information about the quality of these alternatives. Problems of similar kind have been tackled by means of adaptive sampling schemes called racing algorithms. However, in contrast to existing approaches, we do not assume that each alternative is characterized by...
متن کاملActive Sensing and Learning
Consider the problem of estimating a signal from noisy samples. The conventional approach (e.g., Shannon-Nyquist sampling) is to sample at many locations in a non-adaptive and more-or-less uniform manner. For example, in a digital camera we collect samples at locations on a square lattice (each sample being a pixel). Under certain scenarios though there is an extra flexibility, and an alternati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004